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Abstract

Purpose – To introduce a novel numerical calculation procedure for periodically fully developed
heat and fluid flow, which can treat three-dimensional velocity and temperature fields, using a
two-dimensional storage.

Design/methodology/approach – The three-dimensional Navier-Stokes equation and energy
equation have been transformed into quasi-three-dimensional forms. An appropriate set of explicit
periodic boundary conditions have been obtained for thermally fully developed flow through a general
three-dimensional periodic structure, exploiting the volume averaging theory.

Findings – The proposed numerical procedure has been found inexpensive and efficient. Its validity
has been proved by comparing the results obtained for a bank of long cylinders in yaw against
available experimental data.

Originality/value – Since no explicit sets of periodic boundary conditions of this kind have been
reported before, they will be exploited by researchers and practitioners interested in efficient numerical
computations of three-dimensional periodic heat and fluid flows.
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Nomenclature

af ¼ specific interfacial area
Aint ¼ total interface between the fluid

and solid
cpf

¼ specific heat capacity at constant
pressure

D ¼ size of square rod
Eu ¼ Euler number
H, L, M ¼ size of structural unit
hf ¼ interfacial convective heat transfer

coefficient
Prf ¼ Prandtl number
u, v, w ¼ microscopic velocity components

in the x, y and z directions
T ¼ microscopic temperature
p ¼ microscopic pressure

kf ¼ thermal conductivity
~l; ~m; ~n ¼ Cartesian unit vectors
ReD ¼ Reynolds number based on D and

the maximum velocity
s ¼ coordinate along the macroscopic

flow direction
V ¼ elementary representative volume
x, y, z ¼ Cartesian coordinates
a;b; g ¼ angles between the macroscopic

velocity vector and principal axes
a 0 ¼ cross flow angle (projected angle)
vf ¼ kinematic viscosity
rf ¼ density
mf ¼ viscosity
t ¼ similarity factor
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Introduction
In numerical computations, periodic boundary conditions are often used to obtain both
velocity and temperature fields within manmade periodic structures, such as banks of
tubes, arrays of fins, and conduits with periodically shaped wall surfaces. Patankar
et al. (1977) prescribed the pressure drop over one structural unit to attack the problem
of fully developed flow and heat transfer in ducts having streamwise-periodic
variations of cross-sectional area, while Nakayama et al. (1995) and Kuwahara et al.
(2001) chose to prescribe the mass flow rate (rather than the pressure drop) to obtain
the fully developed velocity and temperature fields within two-dimensional periodic
arrays.

The prescription of the periodic boundary conditions for the velocity field (or
pressure field) is rather straightforward, since the profiles at both upstream and
downstream boundaries must be identical. However, that of the temperature field
requires some consideration, when the surface wall temperature is kept constant.
Naturally, the temperature difference between the fluid and solid wall becomes
vanishingly small at the fully developed stage, as in the case of thermally fully
developed tube flow with uniform surface temperature.

Our literature survey has revealed that no explicit thermal boundary conditions are
available for analyzing three-dimensional flow and heat transfer within a
three-dimensional periodic structure, such as shown in Figure 1(a). In this study, we
shall obtain explicit thermal boundary conditions for the case of fully
three-dimensional flow and heat transfer within a three-dimensional periodic
structure with uniform surface temperature, appealing to the volume averaging
theory, extensively used in the field of porous media (e.g. Cheng, 1978, Vafai and Tien,
1981, Quintard and Whitaker, 1993, Nakayama, 1995). Then, the three-dimensional
heat and fluid flow through a two-dimensional periodic structure such as that through
a bank of infinitely long cylinders in yaw, as shown in Figure 1(b), is considered.
Especially for such three-dimensional heat and fluid flow, an economical
quasi-three-dimensional calculation procedure is possible, so as to replace
exhaustive full three-dimensional numerical manipulations. It will be shown that,
under a macroscopically uniform flow through a two-dimensional structure, the
three-dimensional governing equations reduce to quasi-three-dimensional forms, in
which all derivatives associated with the axis of the cylinder can be either eliminated or
replaced by other determinable expressions. Thus, only two-dimensional storages are
required for the dependent variables in question. This substantially saves both CPU
time and storage.

Some researchers, including Grimson (1937, 1938), Omohundro et al. (1949), Bergelin
et al. (1950, 1952) and Zukauskas (1987), carried out extensive experimental
investigations for heat transfer from a bundle of tubes in cross flow, and provided
useful experimental data and correlations for designing cross-flow heat exchangers.
However, these experimental data are limited to a certain class of geometrical

Subscripts and superscripts

f ¼ fluid
s ¼ solid

Special symbols

kl ¼ volume-average
klf;s

¼ intrinsic average
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configurations such as tube banks for aligned and staggered arrangements, subject to
a limited number of sets of transverse and longitudinal pitches. In particular, the data
accounting for the yaw effects (i.e. the three-dimensional effects) are hardly available in
the literature. In designing a particular heat exchanger, the correlations for the
pressure drop and interfacial heat transfer coefficient, as functions of the macroscopic
velocity vector (i.e. its magnitude and direction in reference to the axis of the tube) and
other structural parameters, are definitely needed (Kays and London, 1984). The
present quasi-three-dimensional numerical calculation procedure can be exploited to
conduct a numerical experiment, so as to establish such hydrodynamic and thermal
correlations for a given specific configuration.

Figure 1.
Periodic structures
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Volume-averaging theory
We shall find an appropriate set of periodic boundary conditions for three-dimensional
periodic structure, using the volume averaging theory. Let us assume a
macroscopically uniform steady flow through a three-dimensional periodic structure
of infinite extent as shown in Figure 1(a). The body shape of the structural element is
arbitrary, and its arrangement can be aligned as in Figure 1(a) or staggered in an
arbitrary fashion. Upon referring to the orthogonal unit vectors ð~l; ~m; ~nÞ as shown in
Figure 1(a), the macroscopically steady and uniform velocity field may be presented by

k~ul ¼ jk~uljðcosa~lþ cosb ~mþ cos g~nÞ ð1Þ

where

k~ul ¼
Z
V

~u dV ð2Þ

is the volume averaged velocity vector averaged over a structural volume element V
(i.e. Darcian vector, apparent velocity). The directional cosines of the volume averaged
velocity satisfy the obvious relationship, namely,

cos2 aþ cos2 bþ cos2 g ¼ 1 ð3Þ

This relation may be rewritten equivalently using the cross-flow angle a0 projected
onto the x-y plane as

cosa ¼ sing cosa 0 and cosb ¼ sin g sina 0 ð4Þ

We shall assume that the wall surfaces of the structure are maintained at a constant
temperature. Then, the microscopic temperature field, when averaged spatially within
a local structural control volume V, should lead to the macroscopic temperature field
whose gradient aligns with the macroscopic velocity vector in the s direction, such that
the volume averaged energy equation under the macroscopically steady and uniform
velocity field with negligible macroscopic longitudinal conduction reduces to

rfcpf
jk~ulj

dkTlf

ds
¼ 2hfafðkTlf

2 kTls
Þ ð5Þ

where

kTlf;s ¼
1

V f;s

Z
V f;s

TdV ð6Þ

such that kTlfand kTls denote the intrinsic averaged temperature of fluid and that of
the structure, respectively. Note that Vf and Vs are the volumes of fluid and solid,
respectively, within the structural elementary volume ðV ¼ V f þ V sÞ: Moreover, the
interfacial heat transfer coefficient in the RHS of equation (5) is defined by

hf ;

1
V

Z
Aint

kf
›T

›xj
njdA

ðkTls
2 kTlf

Þ
ð7Þ
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where nj is the unit vector normal to the interface pointing from the fluid side to solid
side. The net heat transfer between the fluid and solid is given by hfafðkTlf 2 kTls

Þ
where af is the specific interfacial area (i.e. interfacial area per unit volume). Since the
surface temperature of the structure kTls is constant, equation (5) naturally yields the
macroscopic temperature field as

kTlf
2 ðTÞs ¼ ðkTlf

2 ðTÞsÞref exp 2
afhf

rfcpf
jk~ulj

ðs2 srefÞ

� �
ð8Þ

Note that the interfacial heat transfer coefficient hf is expected to be constant for the
periodically fully developed heat and fluid flow, as in the cases of thermally fully
developed tube and channel flows. The correct set of the periodic boundary conditions
in question should lead to the microscopic temperature field compatible with the
macroscopic temperature field as given by equation (8). (In other words, the resulting
microscopic temperature field, when averaged spatially, must yield the macroscopic
temperature field given by equation (8).)

Periodic boundary conditions for three-dimensional periodic structure
In order to appreciate the foregoing argument based on the volume averaging theory,
let us consider one of the simplest temperature fields, namely, the fully developed
temperature field for the case of forced convection from isothermal parallel plates with
a channel height H, as shown in Figure 2.

The thermally fully developed flow of this kind may be regarded as one of the
special periodically fully developed flows, since the temperature profile at x ¼ x0 is
similar to that at x ¼ x0 þ L; such that

Tðx0 þ L; yÞ2 Tw

TBðx0 þ LÞ2 Tw
¼

Tðx0; yÞ2 Tw

TBðx0Þ2 Tw
ð9Þ

where L is any axial distance of arbitrary size (which may be unlimitedly large or
small), and TB is the bulk mean temperature. This can be rearranged as

Figure 2.
Fully developed channel

flow
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Tðx0 þ L; yÞ2 Tw

Tðx0; yÞ2 Tw
¼

TBðx0 þ LÞ2 Tw

TBðx0Þ2 Tw
¼ exp 2

2hfL

rfcpf
uBH

� �
: ð10Þ

The last expression in the RHS comes from equation (8), as we note that jk~ulj ¼ uB;
kTlf

¼ TB, kTls ¼ Tw; and af ¼ 2=H for this case. Selecting a reference axial distance
L0 along an arbitrary level at y ¼ y0

Tðx0 þ L0; y0Þ2 Tw

Tðx0; y0Þ2 Tw
¼ exp 2

2hfL0

rfcpf
uBH

� �
: ð11Þ

Upon combining equations (10) and (11), we obtain

Tðx0 þ L; yÞ2 Tw ¼ ðTðx0; yÞ2 TwÞt
L
L0 ð12Þ

where

t ;
Tðx0 þ L0; y0Þ2 Tw

Tðx0; y0Þ2 Tw
: ð13Þ

Hence, equation (12) is a possible expression for the thermally periodic boundary
condition for this simple case, which guarantees us to yield the macroscopic
temperature field compatible with equation (8). It is straightforward to extend the case
to an infinite series of flat plates of finite length, to the two-dimensional periodic
structure of arbitrary shape, and finally to a general three-dimensional periodic
structure, as shown in Figure 1(a).

Thus, the steady-state governing equations and their correct set of the boundary
conditions for periodically fully developed heat and fluid flow through a
three-dimensional periodic structure are given as follows:

7 · ~u ¼ 0 ð14Þ

rfð7 · ~uÞ~u ¼ 27pþ mf7
2~u ð15Þ

rfcpf
7 · ð~uTÞ ¼ kf7

2T: ð16Þ

On the solid walls:

~u ¼ ~0 ð17aÞ

T ¼ Twð¼ kTlsÞ: ð17bÞ

On the periodic boundaries:

~u
��
x¼2L

2

¼ ~u
��
x¼L

2

ð18aÞ

~u
��
y¼2H

2

¼ ~u
��
y¼H

2

ð18bÞ
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~u
��
z¼2M

2

¼ ~u
��
z¼M

2

ð18cÞ

where the origin of the Cartesian coordinates (x, y, z) is set in the center of the structural
unit ð2L=2 # x # L=2; 2H=2 # y # H=2; 2M=2 # z # M=2Þ; as indicated in
Figure 1(a). The mass flow rate constraints are given by:

Z M
2

2M
2

Z H
2

2H
2

u dy dz

�����
x¼2L

2

¼

Z M
2

2M
2

Z H
2

2H
2

u dy dz

�����
x¼L

2

¼ HM cosa kj~ujl ð19aÞ

Z M
2

2M
2

Z L
2

2L
2

v dx dz

�����
y¼2H

2

¼

Z M
2

2M
2

Z L
2

2L
2

v dy dz

�����
y¼H

2

¼ LM cosb kj~ujl ð19bÞ

Z H
2

2H
2

Z L
2

2L
2

w dx dy

�����
z¼2M

2

¼

Z H
2

2H
2

Z L
2

2L
2

w dy dx

�����
z¼M

2

¼ LH cos g kj~ujl: ð19cÞ

Finally, the thermal boundary conditions for the periodic boundaries are given by

T 2 TwÞð jx¼L
2
¼ t

L cosa
L cosaþH cosbþM cos g T 2 TwÞð jx¼2L

2
ð20aÞ

T 2 TwÞð jy¼H
2
¼ t

H cosb
L cosaþH cosbþM cos g T 2 TwÞð jy¼2H

2
ð20bÞ

T 2 TwÞð jz¼M
2
¼ t

M cos g
L cosaþH cosbþM cos g T 2 TwÞð jz¼2M

2
ð20cÞ

where

t ¼
T 2 TwÞð jx¼L

2; y¼
H
2 ; z¼

M
2

T 2 TwÞð jx¼2L
2; y¼2H

2 ; z¼2M
2

: ð21Þ

Our literature survey has revealed that no explicit periodic thermal boundary
conditions (such as given by equations (20a)-(20c)) have been reported for
three-dimensional periodic heat and fluid flows of this kind.

Quasi-three-dimensional numerical calculation procedure
The foregoing set of governing equations and corresponding boundary conditions may
greatly be simplified for the case of the three-dimensional heat and fluid flow through a
two-dimensional periodic structure such as a bank of cylinders in yaw, as illustrated in
Figure 1(b) and more specifically in Figure 3 to show the cross-sectional plane of the
square cylinder bank. All square cylinders in the figure, which may be regarded as
heat sinks (or sources), are maintained at a constant temperature Twð¼ kTls

Þ; which is
lower (or higher) than the temperature of the flowing fluid. Since the cylinders are
infinitely long, the set of the governing equations reduces to a quasi-three-dimensional
form, in consideration of the limiting case, namely, M ! 0:
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›u

›x
þ

›v

›y
¼ 0 ð22Þ

›

›x
u 2 2 n

›u

›x

� �
þ

›

›y
vu2 n

›u

›y

� �
¼ 2

1

r

›p

›x
ð23Þ

›

›x
uv2 n

›v

›x

� �
þ

›

›y
v2 2 n

›v

›y

� �
¼ 2

1

r

›p

›y
ð24Þ

›

›x
uw2 n

›w

›x

� �
þ

›

›y
vw2 n

›w

›y

� �
¼

n

Afluid

I
P int

›w

›n
dP ð25Þ

›

›x
uT 2

n

Prf

›T

›x

� �
þ

›

›y
vT 2

n

Prf

›T

›y

� �
¼ Sw ð26Þ

where P is the coordinate along the wetted periphery whereas n is the coordinate
normal to P pointing inward from the peripheral wall to fluid side. Afluid is the passage
area of the fluid, and

Sw ¼ 2
›

›z
wT 2

n

Prf

›T

›z

� �

¼ 2 w2
n

Prf

cos g lnt0

L cosaþ H cosb

� �
cos g lnt0

L cosaþ H cosb
T 2 TwÞð jz¼0

ð27Þ

since

Figure 3.
Bank of square cylinders
(cross-sectional view)
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›T

›z
¼ T 2 TwÞð jz¼0

M!0
lim

t
M cos g

L cosaþH cosbþM cos g 2 1

M
¼

ðTðx; y; 0Þ2 TwÞ cos g

L cosaþ H cosb
lnt0 ð28Þ

where

t0 ; tjz¼0¼
T 2 TwÞð jx¼L

2; y¼
H
2 ; z¼0

T 2 TwÞð jx¼2L
2; y¼2H

2 ; z¼0

: ð29Þ

The boundary and compatibility conditions for the periodic planes are given by

ujx¼2L
2
¼ ujx¼L

2
ð30aÞ

vjy¼2H
2
¼ vjy¼H

2
ð30bÞ

wjy¼2H
2
¼ wjy¼H

2
ð30cÞ

Z H
2

2H
2

u dy

�����
x¼2L

2

¼

Z H
2

2H
2

u dy

�����
x¼L

2

¼ H cosa kj~ujl ð31aÞ

Z L
2

2L
2

v dx

�����
y¼2H

2

¼

Z L
2

2L
2

v dx

�����
y¼H

2

¼ L cosb kj~ujl ð31bÞ

Z H
2

2H
2

Z L
2

2L
2

w dx dy ¼ LH cos g kj~ujl ð31cÞ

T 2 TwÞð jx¼L
2
¼ t

L cosa
L cosaþH cosb

0 T 2 TwÞð jx¼2L
2

ð32aÞ

T 2 TwÞð jy¼H
2
¼ t

H cosb
L cosaþH cosb

0 T 2 TwÞð jy¼2H
2

ð32bÞ

In this way, all derivatives associated with z can be eliminated. Thus, only
two-dimensional storages are required to solve equations (22)-(26). (Note that both
equations (25) and (26) may be treated as two-dimensional scalar transport equation.)

Method of computation and preliminary numerical consideration
The governing equations (22)-(24) subject to the foregoing boundary and compatibility
conditions (30a), (30b), (31a), and (31b) were numerically solved using SIMPLE
algorithm proposed by Patankar and Spalding (1972). As the u and v velocity fields
were established, the remaining equations (25) and (26) subject to the boundary
conditions (30c), (31c), (32a), and (32b) were solved to find w and T. Convergence was
measured in terms of the maximum change in each variable during an iteration. The
maximum change allowed for the convergence check was set to 1025, as the variables
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are normalized by appropriate references. The hybrid scheme has been adopted for the
advection terms. Further details on this numerical procedure can be found in Patankar
(1980) and Nakayama et al. (1983). For the cases of square cylinder banks, all
computations have been carried out for a one-structural unit L £ H using non-uniform
grid arrangements with 91 £ 91; after comparing the results against those obtained
with 181 £ 181 for some selected cases, and confirming that the results are independent
of the grid system. All computations were performed using the computer system at
Shizuoka University Computer Center.

In order to confirm the validity of the present numerical procedure based on the
periodic boundary conditions, preliminary computations were also conducted for the
case of forced convection from isothermal parallel plates with a channel height H, as
shown in Figure 2. Since a ¼ 0; b ¼ g ¼ p=2 for this case, we find w ¼ Sw ¼ 0; and

Nu2H ¼
hfð2H Þ

kf
¼

rcpfuBH
2

L
ln

1

t0

� �
ð33Þ

from equations (11) and (32a). The computations were made for 10 # Re2H # 103 and
Pr ¼ 1; and the numerical results for Nu2H are presented in Figure 4. As increasing the
Reynolds number, the Nusselt number attains its asymptotic value Nu2H ! 7:54;
which coincides with the exact solution.

Illustrative calculations for three-dimensional heat and fluid flow through a
bank of cylinders in yaw
Validation of quasi-three-dimensional calculation procedure
The efficiency and accuracy of the quasi-three-dimensional calculation procedure,
proposed for the two-dimensional structure, may be examined by comparing the
results based on the procedure with those based on the full three-dimensional
calculation procedure.

Extensive calculations have been carried out using the full three-dimensional
governing equations (14)-(16) for macroscopically uniform flow through a bank of
square cylinders in yaw, as illustrated in Figure 3. For this periodic structure, only the
structural elementary volume V ¼ L £ H ; as indicated by dashed lines in the figure,
may be taken as a calculation domain. The ratio H/L is set to 1, whereas the ratio D/H

Figure 4.
Fully developed Nusselt
number in a channel
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is fixed to 1/2 for all calculations. The Reynolds number for the flow through a bank is
usually defined by

ReD ¼
umaxD

nf
¼

2jk~uljD
nf

ð34Þ

where the size of the cylinder D and the maximum velocity through the structure,
umax ¼ jk~uljH=ðH 2 DÞ; are used as references.

In Figure 5, the resulting velocity and temperature fields obtained for the case of
H=L ¼ 1; a0 ¼ 458; g ¼ 458; ReD ¼ 600 and Prf ¼ 1 using the full three-dimensional
calculation procedure (Figure 5(a)) are compared with those based on the
quasi-three-dimensional calculation procedure based on the simplified governing
equations (22)-(26) (Figure 5(b)). Excellent agreement between the two sets of the
results can be seen, which verifies the accuracy and efficiency of the proposed
quasi-three-dimensional calculation procedure. Moreover, the velocity and temperature
profiles are plotted along some selected lines. These plots, which are not shown here,
have proven that the difference between the two sets of the results is indiscernible. The
CPU time required for the convergence using the full three-dimensional calculation
turned out to be roughly 3 h, six times more than that using the

Figure 5.
Comparison of two

distinct three-dimensional
calculation procedures

(H/L ¼ 1, a 0 ¼ 458
g ¼ 458, ReD¼ 600,

Prf¼ 1)
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quasi-three-dimensional calculation. This proves the effectiveness of the
quasi-three-dimensional calculation procedure.

This economical quasi-three-dimensional calculation procedure has been used to
conduct a numerical experiment for macroscopically uniform flow through a bank of
square cylinders in yaw over a wide range of the Reynolds number and flow angle.

Effect of cross-flow angle on Euler and Nusselt numbers
As we consider the effect of the cross flow angle a0, we shall fix the value of the yaw
angle to g ¼ p=2; such that a0 ¼ a: Zukauskas (1982) assembled the experimental
data for the fully developed pressure drop across the tube and presented a chart for the
Euler number, which is defined by

Eu ¼
2Dp

rfu2
max

ð35Þ

where Dp is the pressure drop per tube row. His inline-square arrangement (despite the
difference in the cross-sectional shape) corresponds to the present arrangement with
a ¼ 0; g ¼ p=2; and H=D ¼ 2: It is also noted that, in reality, the macroscopic flow
direction rarely coincides with the principal axes, since even small disturbances at a
sufficiently high Reynolds number make the flow deviate from the axis. Thus, it is
understood that the chart provided by Zukauskas gives only the average level of the
pressure drop within a range of small a (say 08 , a , 58). The Euler number obtained
by Zukauskas from his pressure drop measurement for the case of g ¼ p=2 and
H=D ¼ 2 is plotted against ReD in Figure 6, where the numerical results from our
numerical experiment based on the quasi-three-dimensional calculation procedure are
drawn together for three cross flow angles, namely, a ¼ 08; 58, and 458, so as to show
the effect of cross-flow angle a on the Euler number. The predicted curve obtained at
a ¼ 58 follows closely along Zukauskas’ experimental curve.

The microscopic temperature results have been processed using equation (7) to
obtain the interfacial heat transfer coefficient hf. In Figure 7, the heat transfer results
obtained at a ¼ 08; 58, and 458 for the cross flows (i.e. g ¼ p=2) are presented in terms
of the interfacial Nusselt number NuD ¼ hfD=kf against the Reynolds number ReD.
The figure suggests that the lower and higher Reynolds number data follow two
distinct limiting lines for the cases of non-zero a. Unlike the Euler number, the

Figure 6.
Effect of Reynolds number
on Euler number
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interfacial Nusselt number is fairly insensitive to the (non-zero) cross-flow angle a.
The lower Reynolds number data stay constant for the given array and flow angle,
whereas the high Reynolds number data vary in proportion to Re0: ~50:6

L : As already
pointed out in connection with the pressure drop, it is quite unlikely to have the
macroscopic flow align perfectly with the principal axes. Therefore, the curve predicted
for a ¼ 0 should hardly be realized. The experimental correlation proposed by
Zukauskas (1987) for the heat transfer from the circular tubes in staggered banks are
compared with the present results obtained for the case of a ¼ p=4; g ¼ p=2; and
H=L ¼ 1: (Note Nuf ø NuD and Ref ø ReD in equation (39) of Zukauskas since
H=D ¼ 2:) The present results follow closely along the experimental correlation of
Zukauskas as increasing the Reynolds number.

Effect of yaw angle on Euler and Nusselt numbers
The pressure drop naturally decreases with decreasing the yaw angle g from p=2: The
correction factor, namely, the ratio of the Euler number EuðgÞ=Euðp=2Þ is often
introduced for engineering use with the cross-flow angle a0 being fixed. It should be
noted that the ratio becomes insensitive to ReD as increasing ReD. The curve of the
ratio of the Euler number generated by changing the yaw angle g for the case of
a0 ¼ 58 is compared against that obtained from the experiment by Zukauskas (1982) in
Figure 8, in which a good agreement can be seen. (Note that Zukauskas’ in-line
arrangement may correspond to the case of a0 ¼ 58; as we judge from Figure 6.)

Zukauskas (1982) investigated the effect of the yaw angle on the interfacial heat
transfer rate. He varied the yaw angle g for both staggered and aligned arrangements,
and compared the corresponding heat transfer rates for the same Reynolds number.
He pointed out that the data when normalized by the value obtained at g ¼ p=2 for all
staggered and inline arrangements, namely, NuDðgÞ=NuDðp=2Þ; can be approximated
by a single curve irrespective of the Reynolds number. His data for both staggered and
inline arrangements are plotted together with our prediction in Figure 9. As in the case of
the Euler number ratio, the Nusselt number ratio becomes insensitive to ReD as
increasing ReD, and may be expressed as function ofg alone. The agreement between the
experimental data and the prediction is fairly good, which again indicates the validity of
our quasi-three-dimensional calculation procedure. (We are grateful to one of the
reviewers who pointed out that the curve in Figure 9 is correlated well by

Figure 7.
Effect of Reynolds number

on interfacial Nusselt
number (Pr ¼ 1)
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NuDðgÞ=NuDðp=2Þ ¼
ffiffiffiffiffiffiffiffiffi
sing

p
; obtainable from the assumption that the Nusselt number

is proportional to the square root of the Reynolds number based on the effective velocity
jk~uljsin g:)

Concluding remarks
An inexpensive and yet efficient numerical calculation procedure has been proposed for
three-dimensional heat and fluid flow through a two-dimensional periodic structure in
yaw. Explicit boundary conditions for the thermally fully developed periodic flow were
obtained exploiting the volume averaging theory. The efficiency and accuracy of the
proposed quasi-three-dimensional calculation procedure were examined by comparing
the results based on the procedure with those based on the full three-dimensional
calculation procedure. The CPU time required for the convergence using
the quasi-three-dimensional computation turned out to be only one sixth of that for
the full three-dimensional calculation computation, proving the effectiveness of the
quasi-three-dimensional calculation procedure.

Extensive calculations have been carried out using this quasi-three-dimensional
calculation procedure for macroscopically steady and uniform flow through a bank of
square cylinders in yaw. The comparison of the numerical results with available
experimental data has proven the validity of the present numerical procedure.
The present quasi-three-dimensional numerical calculation procedure may be exploited

Figure 8.
Effect of yaw angle on
Euler number

Figure 9.
Effect of yaw angle on
interfacial Nusselt number

HFF
15,4
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to conduct a numerical experiment for various heat transfer equipment, so as to
establish possible hydrodynamic and thermal correlations for a given specific
configuration.
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